Thermal-fluid transport phenomena in an axially rotating flow passage with twin concentric orifices of different radii

نویسندگان

  • Shuichi Torii
  • Wen-Jei Yang
چکیده

This paper investigates the thermal fluid-flow transport phenomena in an axially rotating passage in which twin concentric orifices of different radii are installed. Emphasis is placed on the effects of pipe rotation and orifice configuration on the flow and thermal fields, i.e. both the formation of vena contracta and the heattransfer performance behind each orifice. The governing equations are discretized by means of a finitedifference technique and numerically solved for the distributions of velocity vector and fluid temperature subject to constant wall temperature and uniform inlet velocity and fluid temperature. It is found that: (i) for a laminar flow through twin concentric orifices in a pipe, axial pipe rotation causes the vena contracta in the orifice to stretch, resulting in an amplification of heat-transfer performance in the downstream region behind the rear orifice, (ii) simultaneously the heat transfer rate in the area between twin orifice is intensified by pipe rotation, (iii) the amplification of heat transfer performance is affected by the front and rear orifice heights. Results may find applications in automotive and rotating hydraulic transmission lines and in aircraft gas turbine engines. Copyright # 2005 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...

متن کامل

Influence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms

The influence of nanofluid with different wave forms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The ex...

متن کامل

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

Modeling of Transport Phenomena and Melting Kinetics of Starch in a Co-Rotating Twin-Screw Extruder

A mathematical model was developed to simulate fluid flow, heat transfer, and melting kinetics of starch in a co-rotating intermeshing twin-screw extruder (TSE). The partial differential equations governing the transport phenomena of the biomaterial in the extruder were solved by a finite element scheme. For validating the model, the predicted product pressure, bulk temperature at the entrance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005